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1. Introduction and summary

Quantizing the superstring in AdS5 × S5 is important for understanding string theory in

curved spaces and the AdS/CFT correspondence. The most successful route so far is to

make use of the yet to be proven integrability of the superstring theory in AdS5×S5 in the

light-cone gauge [1]. But the light-cone gauge-fixed worldsheet theory is a rather unusual

theory from the point of view of integrable models, as it is not relativistically invariant.

Although the progress in understanding the worldsheet integrability has so far defied this
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point, it may nevertheless be of interest to obtain a formulation of the theory as a rela-

tivistically invariant integrable theory. In this paper we will make a step in this direction.

The idea is to find a reformulation of the model in terms of a two-dimensional, Lorentz

invariant sigma-model, which is a mass deformation of a conformal field theory. This

point of view has been very useful in order to construct the quantum conserved charges of

integrable theories. It has been used e.g. by Reshetikhin and Smirnov [2] in the context

of Sine-Gordon theory and perturbed minimal models, and by Bernard and LeClair [3]

who construct the quantum non-local charges for the sine-Gordon model from the mass-

deformed conformal theory of a free boson, or more generally for affine Toda theories by

means of mass-deformed WZW models. Key to this approach is that the spectrum of the

UV conformal theory is known. Such a formulation of the Green-Schwarz-Metsaev-Tseytlin

(GSMT) string for AdS5 × S5 [1] is missing, and we wish to propose such a reformulation.

We follow the proposal of Bakas, Park and Shin (BPS) [4], which allows to construct for

a bosonic symmetric space sine-Gordon model a classically equivalent theory as a mass

deformed gauged WZW model.

There are various caveats with this approach, which will require further study. Firstly

this reformulation is on a purely classical level. More precisely, we will construct a

sigma-model, which is similar to the BPS models except that we include fermions. This

sigma-model will reproduce the classical equations of motion of the GSMT superstring on

AdS5 × S5. However the Poisson structures of the two theories differ. Thus, not even

classically, these are equivalent theories. But surprisingly, this does not yet imply that

the quantum theories are different. A similar situation occured in [5], where two different

classical Poisson structures correspond to expansion around different classical vacua of the

same quantum model (see also [6]). Secondly, it would be desirable to obtain a theory that

is world-sheet supersymmetric. The model that we propose may be world-sheet supersym-

metric, however, we were so far unable to uncover this structure. It remains to be seen

also, whether the perturbation of the underlying gauged WZW model can be computed

rigorously. We leave this for the future.

The plan of this paper is as follows. We first review the boost-invariant symplectic

structure of the GSMT string (Section 2). Then we review the action of Bakas, Park and

Shin (sections 3.1 and 3.2) and discuss subtleties with zero modes and the relation to the

Hamiltonian reduction of the WZW model (section A.1). We then propose (in section 4)

the BPS-type action for the GSMT string in AdS5 × S5 and show that it reproduces the

correct equations of motion.

2. The boost-invariant symplectic structure of the Metsaev-Tseytlin su-

perstring

2.1 Classical superstring in terms of currents

The boost-invariant symplectic structure of the classical superstring in AdS5 × S5 was

constructed in [7] in the lightcone formalism. In this formalism the classical string solution

is described in terms of the data on the characteristic. The characteristic is a light-like

curve on the string worldsheet. We will pick a characteristic which is described in the
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conformal coordinates (τ+, τ−) by τ− = 0. With the appropriate choice of the boundary

conditions the string phase space can be described in terms of the lightcone components of

the currents at τ− = 0. The currents J take values in g = psu(2, 2|4), and the index 0 . . . 3

indicates the Z4 grading g = g0 ⊕ g1 ⊕ g2 ⊕ g3:

J+(τ+, 0) = J0+ + J1+ + J2+ + J3+ . (2.1)

There are gauge transformations:

δξJ+ = ∂+ξ + [J+, ξ] , ξ ∈ g0 . (2.2)

To summarize:

g0 = so(1, 4) ⊕ so(5)

g0 + g2 = so(2, 4) ⊕ so(6)

g0 ⊕ g1 ⊕ g2 ⊕ g3 = psu(2, 2|4) .

We will introduce the notation

∇± = ∂± + ad(J0±) . (2.3)

2.2 Geometrical meaning of J± and ∇±

Geometrically J2̄± are the ”lightcone velocity vectors” of the string worldsheet. In the near-

flat space expansion (see [9]) they become ∂±x + (ϑ,Γ∂±ϑ) + . . .; both J2̄+ and J2̄− are

elements of the tangent space to AdS5 × S5. The g0̄-components J0̄± should be identified

with the Levi-Civita connection (Christoffel symbols). The components in g1̄,3̄ are the

velocities of the worldsheet fermions, they are J1̄± = ∂±ϑR + . . . and J3̄± = ∂±ϑL + . . . in

the near-flat space expansion. (In the flat space limit ϑL and ϑR would come from the left

and right sectors of the worldsheet theory.)

2.3 Poisson brackets in the lightcone description

The J+ components are independent functions of τ+. The J− components can be, at least

formally, expressed through them using the equations of motion. Therefore the data (2.1)

with the gauge equivalence (2.2) determines the string worldsheet. The string worldsheet

action is degenerate, and there are additional local symmetries besides (2.2). The kappa-

symmetries are partially fixed by the conditions

J1+ = J3− = 0 . (2.4)

We will assume (2.4) throughout this paper. It is useful to remember that with J1+ =

J3− = 0 the equations of motion for J2 are

∇∓J2± = 0 . (2.5)

The boost-invariant lightcone Poisson brackets are

{J0+, J0+}
[0] = 2∇+ (2.6)

{J3+, J3+}
[0] = −2ad(J2+) , (2.7)

– 3 –
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in the following sense: if F (J0+, J3+) and G(J0+, J3+) are two functionals on the light cone

phase space, then their Poisson bracket is

{F,G} =

∫
dτ+ str

(
2

δF

δJ0+
∇+

δG

δJ0+
− 2

δF

δJ3+

[
J2+,

δG

δJ3+

])
, (2.8)

with all the other components zero. In particular, the Poisson bracket of J2+ with every-

thing else is zero. This means that this Poisson bracket is a degenerate one, and we have

to restrict on the symplectic leaves, see the discussion in [7] for details. On a symplectic

leaf we have

J2+(τ+) = J
[0]
2+(τ+) , (2.9)

where J
[0]
2+(τ+) is a fixed matrix-valued function. A convenient choice is:

J2̄+ =





0 α1 0 0 0 0

−α1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





so(2,4)

⊕





0 α2 0 0 0 0

−α2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





so(6)

(2.10)

where α1 and α2 are some constants. In string theory we want J
[0]
2+ to satisfy the Virasoro

constraints

str J2
2+ = 0 . (2.11)

therefore we put:

α1 = α2 (= const) .

Even after we fix J2+ as in (2.10), still θ[0] is degenerate. To completely specify the

symplectic leaf we fix in addition J3+ to be of the form:

J3+ − J
(0)
3+ = [J2+,K1] , (2.12)

with fixed J
(0)
3+ . In the theory of classical superstring in AdS5 × S5 the symplectic leaves

of the boost-invariant Poisson bracket are transversal to the orbits of the worldsheet

reparametrizations and kappa-transformations. As explained in section 4.3 of [7] we can

choose the kappa-gauge so that J
(0)
3+ = 0, in other words

J3+ = [J2+,K1] . (2.13)

On this symplectic leaf the symplectic form can be written as follows

Ω[0] =

∫
dτ+

(
tr

(
δff−1δ(∂+ff−1)

)
+ tr

(
δK1̄[J2̄+, δK1̄]

))
. (2.14)

where f is related to J0+ by the formula

J0+ = −∂+ff−1 . (2.15)
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The discussion in [7] was limited to the positive component of the lightcone: τ− = 0. To

completely describe the worldsheet, we have to specify a second characteristic, that is the

negative component of the lightcone: τ+ = 0. We can choose

J1− = [J2−,K3] , (2.16)

on the negative component. Then the equations of motion are compatible with (2.13)

and (2.16) in the following way

∇−K1 = J1− + X1− (2.17)

∇+K3 = J3+ + X3+ , (2.18)

where X1− and X3+ are undetermined quantities with the property [J2+,X1−] =

[J2−,X3+] = 0.

3. The action giving rise to the boost-invariant Poisson bracket

In this section we rewrite the classical string equations of motion in a form which closely

resembles the equations of motion of a gauged WZW model with a mass term. Then we

will explain what is precisely the relation.

3.1 The action of Bakas, Park and Shin

3.1.1 An equivalent form of the string worldsheet equations of motion.

As a warmup let us consider the bosonic string on R×Sn. The sphere Sn is the symmetric

space SO(n + 1)/SO(n). We denote:

G = SO(n + 1) , G0 = SO(n) , H = SO(n − 1) . (3.1)

The corresponding Lie algebras are:

g = g2 ⊕ g0 = so(n + 1)

g0 = so(n)

h = so(n − 1) .

The equations of motion are

∇+J2− = ∇−J2+ = 0 (3.2)

[∇+,∇−] + [J2+, J2−] = 0 , (3.3)

where ∇± = ∂± + J0±. We can choose such a gauge that J2+ = T is a constant matrix

(c.f. eq. (2.10)). For example for n = 5 we can take:

T =





0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





– 5 –



J
H
E
P
0
5
(
2
0
0
8
)
0
7
5

Then the stabilizer of T in g0 is h = so(n − 1). Then (3.2) implies that

J0− = A− ∈ h . (3.4)

Let us introduce g ∈ G0 such that

J2− = g−1J2+g . (3.5)

Then eq. (3.2) implies that

∂+ + J0+ = g−1(∂+ + A+)g , A+ ∈ h . (3.6)

Therefore the phase space of the classical string can be described by the data

(g , A+ , A−) , (3.7)

subject to the equations

[g−1(∂+ + A+)g , ∂− + A−] + [T, g−1Tg] = 0 , (3.8)

modulo the gauge symmetries

g 7→ hLgh−1
R

∂+ + A+ 7→ hL(∂+ + A+)h−1
L (3.9)

∂− + A− 7→ hR(∂− + A−)h−1
R .

The hL gauge symmetry is a ”tautological” gauge symmetry, existing because we replaced

J2− with g, see eq. (3.5). And the hR gauge symmetry is what remains of (2.2), after we

put J2+ = T .

3.1.2 Gauged WZW with a mass term

Eq. (3.8) is identified in [4] as one of the equations of motion of the mass deformed gauged

WZW model with the gauge fields A+ and A−. More precisely, the action takes the form

SBPS(g,A+, A−) = SWZW (g) + Sgauge(g,A+, A−) + Smass(g) , (3.10)

where

SWZW = −
1

4π

(∫
d2τTr(∂+g∂−g−1) +

∫

B

1

3
Tr(g−1dg)3

)

Sgauge =
1

2π

∫
d2τTr

(
A+A− − A+gA−g−1 + A+∂−gg−1 − A−g−1∂+g)

)

Smass =
1

2π

∫
d2τTr

(
Tg−1Tg

)
.

(3.11)

The variation with respect to g of the action SBPS(g,A+, A−) is

δSBPS =

∫
Tr

(
([g−1(∂+ + A+)g , ∂− + A−] + [T, g−1Tg])g−1δg

)
. (3.12)
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This leads to the equation of motion which is identical to (3.8):

[g−1(∂+ + A+)g , ∂− + A−] + [T, g−1Tg] = 0 , (3.13)

The variation with respect to A+ and A− gives the equations of motion for the gauge fields

A+ =
(
g−1(∂+ + A+)g

)
h

(3.14)

A− =
(
g(∂− + A−)g−1

)
h

. (3.15)

We will explain the relation between the classical string described by the equations

of motion (3.7)–(3.9) and the gauged WZW model. The main idea is to observe that the

classical string can be identified with the Hamiltonian reduction of the WZW model with

respect to the symmetries (A.7). The Hamiltonian reduction of the WZW model is closely

related to the gauged WZW model, in fact it coincides with the gauged WZW model up

to subtleties with zero modes.

3.2 Relation between string worldsheet theory and gauged WZW: formal anal-

ysis on an infinite worldsheet

Classical solutions of the action (3.10) are also solutions of eqs. (3.8). It is not imme-

diately obvious why all the solutions of (3.7)–(3.9) can be obtained as classical solutions

of (3.10), because there are additional equations (3.14) and (3.15). In other words, the

action (3.10) gives solutions of the system (3.7)–(3.9) with the particular A±, namely A±
satisfying (3.14) and (3.15). One has to prove that any solution of (3.8) can be transformed

by the gauge transformations (3.9) to a solution satisfying (3.14) and (3.15). The detailed

analysis of this question in both bosonic and supersymmetric cases is discussed in [8]. Let

us briefly summarize the argument from our point of view. We have to prove that all

the solutions of the system (3.7)–(3.9) can be obtained from (3.10). Given an arbitrary

solution of the system (3.7)–(3.9), we can bring it to the gauge A± = 0 using the gauge

transformations (3.9) with the parameters hL = P exp
∫

dτ+A+ and hR = P exp
∫

dτ−A−.

In this gauge g satisfies

∂−(g−1∂+g) = [T, g−1Tg] . (3.16)

Moreover, even after we fix the gauge A± = 0 there are still residual gauge transformations

with hL = hL(τ−) and hR = hR(τ+). Let us first assume that the worldsheet is infinite,

then we can use these gauge transformations to further fix the gauge, so that

(g−1∂+g)h = 0 (3.17)

(∂−gg−1)h = 0 . (3.18)

This is possible because (3.16) implies that

j+ = (g−1∂+g)h and j− = (∂−gg−1)h , (3.19)

are holomorphic and antiholomorphic currents

∂−j+ = ∂+j− = 0 . (3.20)
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This means that hR = P exp
(
−

∫
j+dτ+

)
is holomorphic and hL = P exp

(
−

∫
j−dτ−

)
is

antiholomorphic and therefore we can use the residual gauge transformation with these hL

and hR to fix j+ = j− = 0 which is precisely (3.17), (3.18). Now (g,A±) satisfies (3.14)

and (3.15). This proves that any solution of the classical string equations (3.7)–(3.9) can

be gauge transformed to satisfy (3.14) and (3.15), and therefore is also a solution of the

equations of motion of (3.10).

3.3 Interpretation as Hamiltonian reduction of WZW model

In the next section we will include fermions and explain how the classical superstring in

AdS5 × S5 is related to the gauged WZW model interacting with fermions. But before we

discuss fermions we want to give a “geometrical” explanation of why eq. (3.16) implies the

existance of the holomorphic and antiholomorphic currents, eq. (3.20). This will be useful

for understanding the fermionic extension. After we include fermions the holomorphic and

antiholomorphic currents become more complicated, but the geometrical interpretation of

them as moment maps remains the same.

Notice that eq. (3.16) is the equation of motion of the mass deformed (ungauged)

WZW model with the action SWZW (g) + Smass(g). The classical phase space of the WZW

model (with or without the mass term) has a symmetry:

g(τ+, τ−) 7→ hL(τ−)g(τ+, τ−)hR(τ+)−1 . (3.21)

Here hL(τ−) and hR(τ+) are periodic H-valued functions, so the symmetry group is the

product of two loop groups: LH × LH. Now we have a Hamiltonian system (the classical

WZW model) and a symmetry acting on its phase space (LH ×LH). One can verify that

this symmetry preserves the symplectic form, and in fact the currents j+ and j− defined by

eqs. (3.19) are precisely the densities of the moment map corresponding to this symmetry,

and eq. (3.20) is the conservation of the moment map. (See the appendix for details.)

Setting j± to zero (eqs. (3.17) and (3.18)) corresponds to considering the Hamiltonian

reduction of the WZW model by the symmetry LH × LH. From this point of view the

classical string described by eqs. (3.7)–(3.9) is naturally identified, at least at the level of

equations of motion, with the Hamiltonian reduction of the WZW model. The Hamiltonian

reduction of the WZW model is closely related to the gauged WZW model (3.10), in fact

it is equivalent to the gauged WZW model on the infinite line. On the cylinder there is a

mismatch of zero modes, see the appendix for details.

Similar arguments hold for the fermionic extension which we will now describe.

4. Including fermions

We will now show that we can include fermions to the mass-deformed gauged WZW model

so that the classical equations of motion agree with those of the Metsaev-Tseytlin string

in AdS5 × S5.

– 8 –
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4.1 Fermionic terms in the action

The symplectic leaf (2.12) is parametrized by K1. This means that the action of the

generalized sine-Gordon model should be described in terms of K1 and K3 rather than J3

and J1. Therefore we will take K1 and K3 as independent variables. Eq. (2.14) suggests

to look for an action in the following form:

S = SBPS + ∆Skin + ∆Smass = SBPS +

∫
d2τ

{
−

1

2
str[J2+,K1]∇−K1−

−
1

2
str[J2−,K3]∇+K3 + str[J2+,K1][J2−,K3]

}
, (4.1)

where SBPS is described in the previous section. Let us consider the gauge where J2+ = T

and J2− = g−1Tg and T is a constant matrix. In this gauge

∇− = ∂− + ad(J0−) = ∂− + ad(A−) (4.2)

∇+ = ∂+ + ad(J0+) = ∂+ + ad(g−1A+g + g−1∂+g) . (4.3)

We will now prove that this action leads to the correct equations of motion for the classical

superstring in AdS5 × S5.

4.2 Equations of motion

We now derive the equations of motion from the variation of K1,3 and g and show that

these agree with the string equations of motion.

First consider the variation with respect to the fields K1 and K3, which will yield the

equations of motion for the fermionic fields. Varying δK1 gives

−[J2+,∇−K1] + [J2+, [J2−,K3]] = −∇−J3+ − [J1−, J2+] = 0 . (4.4)

Likewise the variation with respect to K3 yields

−[J2−,∇+K3] + [J2−, [J2+,K1]] = −∇+J1− − [J3+, J2−] = 0 . (4.5)

These are the correct equations of motion for the fermions.

The bosonic equations are obtained from the variation δξg = gξ. We have

δξ∇− = 0, δξ∇+ = ad(∇+ξ), δξJ2− = [J2−, ξ] . (4.6)

The ξ-variation of the BPS action gives

δξSBPS =

∫
str (ξ (∂+J0− − ∂−J0+ + [J0+, J0−] + [J2+, J2−])) . (4.7)

The variation of ∆Skin is

δξ∆Skin = −
1

2

∫
strξ∇+[K3, [K3, J2−]] +

1

2

∫
strξ[J2−, [K3,∇+K3]] =

= −

∫
strξ[K3, [∇+K3, J2−]] =

∫
strξ[K3, [J2−, J3+]] . (4.8)

– 9 –
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We used the fermion equation of motion (4.5), which implies that ∇+K3 = J3++ terms

that are annihilated by ad(J2−). Finally, the variation of ∆Smass is

δξ∆Smass =

∫
δξ str[J2+,K1][J2−,K3] = −

∫
str[[[J2+,K1],K3], J2−]ξ . (4.9)

We get:

δξ(∆Skin + ∆Smass) = str (ξ[J3+, J1−]) . (4.10)

Therefore the variation of SBPS + ∆Skin + ∆Smass gives the correct bosonic equation of

motion

∂+J0− − ∂−J0+ + [J0+, J0−] + [J2+, J2−] + [J3+, J1−] = 0 . (4.11)

We have shown that the action of (4.1) reproduces correctly all the equations of mo-

tion, (4.5), (4.4) and (4.11), of the GSMT super-string on AdS5 × S5.

4.3 Variation with respect to A±

The story is similar to the case of the bosonic string. As in section 3.1.2 we can go to

the gauge where A± = 0. The equations following from (4.1) are the same as the string

equations of motion plus the vanishing of the holomorphic current

j+ =

(
g−1∂+g −

1

2
[K1, [K1, J2+]]

)

h

, (4.12)

and vanishing of the similar antiholomorphic current j−. As in the case of the bosonic

string j+ and j− can be gauged away by the residual holomorphic and antiholomorphic

gauge transformations. The holomorphicity follows from the equations of motion, see [8]

for a detailed discussion of these questions. From the point of view of the boost-invariant

symplectic structure (2.14) the equation j+ = 0 can be interpreted as skew-orthogonality

to the orbits of the gauge transformations δg = gξ, δK1 = [K1, ξ], ξ ∈ h. Therefore j+ can

be understood as the moment map of the ungauged mass-deformed WZW with fermions

with respect to the symmetry:

g(τ+, τ−) 7→ g(τ+, τ−)hR(τ+) (4.13)

K1,3(τ
+, τ−) 7→ hR(τ+)−1K1,3(τ

+, τ−)hR(τ+) . (4.14)
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A. Hamiltonian reduction of WZW model

A.1 Classical string with periodic boundary conditions and Hamiltonian reduc-

tion of WZW

We have seen that on an infinite worldsheet the classical string is equivalent to the gauged

WZW model. The analysis on an infinite worldsheet is formal because we neglect the

boundary terms. What happens when we consider instead a cylindrical worldsheet? To

understand periodic boundary conditions, we will use an interpretation of the classical

string as a Hamiltonian reduction. It turns out that the classical string in the form de-

scribed by eqs. (3.7)–(3.9) is closely related to the Hamiltonian reduction of the mass

deformed WZW model with respect to the symmetries (A.7).

The precise relation is the following. Let Mstring denote the space of classical solu-

tions of the equations (3.7)–(3.9). It can be represented as a continuous family of sub-

spaces M
[mL],[mR]
string parametrized by the conjugacy classes of the monodromies mL =

→

P

exp
[
−

∫ 2π
0 ∂−gg−1|h dτ−

]
and mR =

→

P exp
[∫ 2π

0 g−1∂+g|h dτ+
]
:

Mstring =
⋃

[mL],[mR]

M
[mL],[mR]
string . (A.1)

Each subspace M
[mL],[mR]
string is naturally identified as the phase space of a Hamiltonian re-

duction of the mass deformed WZW model:

M
[mL],[mR]
string = M

[mL],[mR]
WZW//(LH×LH) (A.2)

where [mL] and [mR] are identified the conjugacy classes of the moment map.

We will explain in section A.4 that the Hamiltonian reduction of the WZW model is

closely related to the gauged WZW model.

A.2 Hamiltonian reduction of WZW model

Consider a classical mechanical system with the action of some group H on the phase space

M. Let h = Lie(H) denote the Lie algebra of H. Suppose that H preserves the symplectic

structure, and therefore it is generated by a set of Hamiltonians; each vector field ξ ∈ h is

generated by its own corresponding Hamiltonian Hξ. Notice that we should have

{Hξ1 ,Hξ2} = H[ξ1,ξ2] + const . (A.3)

We think of the constant term as Hc where c is the central element of some central extension

of h, let us call it ĥ. The moment map µ is a map from the phase space M to (ĥ)∗, which

is defined in the following way. For each point x ∈ M, and ξ ∈ h, we define:

µ(x) ∈ ĥ∗ : 〈µ(x), ξ〉 = Hξ(x) (A.4)

It follows from (A.3) that the moment map has the property of equivariance:

µ(h.x) = Ad(h−1)∗.µ(x) . (A.5)
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The Hamiltonian reduction consists of three steps. First choosing a coadjoint orbit O ⊂ h∗,

then restricting to the subspace of the phase space determined by the equation µ(x) ∈ O,

and finally identifying the points which are connected by the action of H:

x ≃ y if y = h.x for some h ∈ H .

Schematically:

M//H = µ−1O/H . (A.6)

Notice that the Hamiltonian reduction depends on the choice of a coadjoint orbit O ⊂ h∗.

Let us now look at the Hamiltonian reduction of the WZW model by the symmetries:

g(τ+, τ−) 7→ hL(τ−)g(τ+, τ−)hR(τ+)−1 (A.7)

where both hL and hR are in H ⊂ G. The symplectic structure of the (ungauged) WZW

model is given by this equation:

ΩWZW =

∫ 2π

0
dτ+ tr δgg−1∂+(δgg−1) −

∫ 2π

0
dτ− tr g−1δg∂−(g−1δg) . (A.8)

Notice that these symmetries form two copies of the loop group1 of H; therefore the

symmetry group is LH × LH. The infinitesimal version of (A.7) is

δ(αL,αR)g(τ+, τ−) = αL(τ−)g − gαR(τ+) , (A.9)

where the Lie algebra Lh⊕Lh is parametrized by the pair (αL, αR). The moment map is:

〈µ , (αL, αR)〉 = −2

∫ 2π

0
dτ−tr αL∂−gg−1 − 2

∫ 2π

0
dτ+tr αRg−1∂+g . (A.10)

This, in particular, implies that ∂+(∂−gg−1|h) = ∂−(g−1∂+g|h) = 0. We will denote:

j+ = g−1∂+g|h and j− = ∂−gg−1|h (A.11)

The coadjoint action of ĥ ⊕ ĥ on j+ and j− is given by the formulas:

δαR
j+ = −∂+αR − [j+, αR] δαR

j− = 0

δαL
j+ = 0 δαL

j− = −∂−αL − [j−, αL] .
(A.12)

Since we want to discuss the Hamiltonian reduction of the WZW model, we need to know

what are the orbits of this coadjoint action. To describe the orbits we need to classify the

invariants of this action. The invariants are the eigenvalues of the left and right monodromy

matrices. These monodromy matrices are defined as follows:

mL =
→

P exp

[
−

∫ 2π

0
j−dτ−

]
(A.13)

mR =
→

P exp

[∫ 2π

0
j+dτ+

]
. (A.14)

1The elements of the loop group LH are group-valued functions h(σ) satisfying h(σ + 2π) = h(σ)
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A.3 How the space of solutions to (3.7)–(3.9) is related to the Hamiltonian

reduction of WZW by the symmetries (A.7)?

Let us look at the solutions to the system of equations (3.7)–(3.9). We denote this space

Mstring. Just as we did on the infinite line, we can still gauge away A+ and A− on

the cylinder using the gauge transformations (3.9); there is no obstacle. In the gauge

A± = 0 the equation (3.8) becomes the WZW equation of motion and the residual gauge

transformations are precisely the symmetries (A.7) which we used to define the Hamiltonian

reduction. On an infinite line we could use these residual gauge transformations to put

j± = 0, but on a cylinder the conjugacy classes of mL and mR (defined in eqs. (A.13)

and (A.14)) are obstacles to gauging away j±. The space of solutions splits into a union of

subspaces with a fixed conjugacy classes of mL and mR:

Mstring =
⋃

([mL],[mR])∈H/H×H/H

M
[mL],[mR]
string . (A.15)

For every fixed [mL] and [mR] the subspace M
[mL],[mR]
string is identical to the phase space of the

Hamiltonian reduction of the WZW model on the value of the moment map corresponding

to ([mL], [mR]).

A.4 How the Hamiltonian reduction of WZW is related to the gauged WZW?

We want to explain in which sense the action of the massive gauged WZW given by

eq. (3.10) describes the classical string. We already explained how the classical string

is related to the Hamiltonian reduction of the WZW model by the infinite dimensional

symmetry group LH × LH acting as specified in (A.7). But what is the relation between

the Hamiltonian reduction of the WZW model and the gauged WZW model? It turns out

that these two models are equivalent modulo subtleties with zero modes, which we will

now describe.

We want to understand the relation between these two systems:

1. Gauged WZW model defined by the action SWZW + Sgauge (see eq. (3.11))

2. Hamiltonian reduction of (ungauged) SWZW with respect to the symmetries:

g(τ+, τ−) 7→ hL(τ−)g(τ+, τ−)hR(τ+)−1 (A.16)

As we explained, the procedure of Hamiltonian reduction depends on the choice of a conju-

gacy class of mL and the choice of a conjugacy class of mR. In particular if mL = mR = 1,

then we can use the gauge transformations (A.12) to choose g to satisfy (3.17) and (3.18).

From this point of view eq. (3.17) defines a submanifold in the phase space which is skew-

orthogonal with respect to the Kirillov form (A.8) to the orbit of the gauge transformations

g 7→ gh−1
R , see section 5.6 of [7]. Similarly (3.18) defines a subspace orthogonal to the orbit

of g 7→ hLg.

More generally, suppose that the conjugacy class of j+ under the transformation δαR

coincides with the conjugacy class of j− under the transformation δαL
. This means that

there is f ∈ H such that

fmLf−1 = mR . (A.17)
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In this case we will denote

M
[m]
string = M

[m],[m]
string .

It turns out that M
[m]
string can be identified as the Hamiltonian reduction of the gauged

WZW phase space on the level set of the conjugacy class of the holonomy of the WZW

gauge field A (the A of eq. (3.11)).

Indeed, let us describe the map from g of (A.8) to a solution of the gauged WZW

model. First of all, making the constant gauge transformation with f ∈ H we can choose

mL = mR = m , (A.18)

and we can also rotate m into a fixed maximal torus of H. Then consider ĝ defined by the

formula:

ĝ(τ, σ) =

(
→

P exp

[
−

∫ σ

0
j−dτ−

])
g

(
←

P exp

[
−

∫ σ

0
j+dτ+

])
. (A.19)

Notice that ĝ has the following properties:

∂−(ĝ−1∂+ĝ) = 0 (A.20)

ĝ−1∂+ĝ|h = ∂−ĝĝ−1|h = 0 (A.21)

ĝ(2π) = mĝ(0)m−1 . (A.22)

This is almost what we need, except for we want to make g periodic. Consider µ ∈ h such

that m = e2πµ, and define g̃:

g̃(τ, σ) = e−σµĝ(τ, σ)eσµ (A.23)

One can check that g̃ satisfies the equations of motion (3.13), (3.14) and (3.15) of the

gauged WZW model with Aτ = 0 and Aσ = µ.

On the other hand, notice that any solution of the gauged WZW can be gauged to

Aτ = 0, Aσ = µ for some µ. The conjugacy class [µ] is a dynamical variable in the

gauged WZW. But when we do the Hamiltonian reduction of the WZW model, we fix [µ].

Moreover, the Hamiltonian reduction of the WZW model has additional residual gauge

tranformations which correspond to the following transformations of g̃:

δg̃ = αg̃ + g̃α , α ∈ h (A.24)

where the gauge parameter α should commute with µ: [α, µ] = 0. From the point of

view of the gauged WZW model these transformations are generated by the eigenvalues of

P exp
∫

A, i.e. the eigenvalues of µ.

Indeed, the symplectic form following from the action SWZW (g)+Sgauge(g,A+, A−) is:

Ω =

∫
dτ+ tr

(
δgg−1∇+(δgg−1) + 2δgg−1δA+

)
+

+

∫
dτ− tr

(
−g−1δg∇−(g−1δg) + 2g−1δgδA−

)
. (A.25)
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Figure 1: The classical string phase space is shown as a horizontal plane; each point on the plane

corresponds to the phase space of the Hamiltonian reduction of WZW for the value of the moment

map ([mL], [mR]). The phase space of the gauged WZW is mapped on the subspace [mL] = [mR] of

codimension rk(h). The map involves identification of the points related by the action of U(1)rk(h).

We can choose the gauge where A+ = −A− = µ and µ belongs to the Cartan subalgebra of

h. In this gauge it is straightforward to see that the Hamiltonian tr(αµ) generates (A.24).

We demonstrated that the Hamiltonian reduction of the WZW model on the fixed value

µ of the moment map corresponds to the gauged WZW with the fixed P exp
∫

A = e2πµ

with the following identification: two configurations are considered equivalent when they

are related by the transformation (A.24). But this is precisely the Hamiltonian reduction of

the gauged WZW model on a fixed value of the conjugacy class of the holonomy P exp
∫

A.

The conclusion is that the Hamiltonian reduction of the WZW model by the infinite-

dimensional group LH×LH acting according to eq. (A.16) is equivalent to the Hamiltonian

reduction of the gauged WZW model by the finite-dimensional group U(1)rk(h) generated

by the eigenvalues of the holonomy of the gauge field.

Figure 1 illustrates the relation between the phase spaces.
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